Qu’est-ce que l’interférence optique? – ExtruDesign

L’interférence optique est un effet qui peut se produire lorsque deux ou plusieurs faisceaux lumineux sont superposés. Nous savions qu’un rayon de lumière est composé d’un nombre infini d’ondes de même longueur d’onde. la valeur de la longueur d’onde détermine la couleur de la lumière.

Interférence optique

Par souci de simplicité, considérons deux ondes, ayant une propriété sinusoïdale, issues de deux rayons lumineux différents. La figure ci-dessous illustre l’effet combiné des deux ondes lumineuses. Les deux rayons A et B sont en phase à l’origine O et le resteront tant que les rayons se propagent sur une grande distance.

Interférence optique
Deux ondes d’amplitudes différentes qui sont en phase

Supposons que les deux rayons aient des amplitudes yUNE AndyB,

alors l’onde résultante aura une amplitude yR = yUNE + yB

Ainsi, lorsque les deux rayons sont en phase, l’amplitude résultante est maximale et l’intensité lumineuse est également maximale. Cependant, si les deux rayons sont déphasés, disons d’une quantité d, alors l’onde résultante aura une amplitude de

yR = (yUNE + yB) cos𝛿 / 2

Il est clair que la combinaison des deux ondes ne produit plus un éclairement maximal.

Interférence optique
Deux ondes d’amplitudes différentes, déphasées de 180 °

Prenons le cas où la différence de phase entre les deux ondes est de 180 °. L’amplitude de l’onde résultante, qui est indiquée dans la figure ci-dessus, est la somme algébrique de yUNE AndyB. Le corollaire est que si yUNE AndyB sont égaux, alors yR sera nul puisque cos (180/2) est nul. Cela signifie qu’une interférence complète entre deux ondes ayant la même longueur d’onde et la même amplitude produit de l’obscurité.

L’une des propriétés de la lumière est que la lumière provenant d’une seule source peut être divisée en deux rayons composants. L’observation de la manière dont ces composants se recombinent nous montre que la longueur d’onde de la lumière peut être utilisée pour la mesure linéaire. Le déplacement linéaire d entre les longueurs d’onde des deux rayons lumineux se traduit par une interférence maximale lorsque d = λ / 2

Où λ est la longueur d’onde de la lumière.

Formation de franges
Formation de franges

Maintenant, de quelle manière cette propriété va-t-elle nous aider à prendre des mesures linéaires? La figure ci-dessus illustre comment la propriété d’interférence de la lumière peut être utilisée pour la mesure linéaire. Considérons deux rayons lumineux monochromatiques provenant de sources à deux points, A et B, qui ont la même origine. Les rayons lumineux sont amenés à tomber sur un écran plat placé perpendiculairement à l’axe OO1. L’axe OO1 est à son tour perpendiculaire à la ligne joignant les sources à deux points, A et B. Puisque les deux rayons proviennent de la même source lumineuse, ils sont de la même longueur d’onde. Supposons également que les distances OA et OB soient égales.

Maintenant, considérons la convergence de deux rayons au point O1 sur l’écran. Puisque les distances AO1 et BO1 sont égaux, les deux rayons sont en phase, ce qui entraîne un éclairement maximal au point O1. En revanche, au point O2, la distance BO2 est plus longue que la distance AO2. Par conséquent, au moment où les deux rayons arrivent au point O2, ils sont déphasés. En supposant que la différence de phase d = λ / 2, où λ est la longueur d’onde de la lumière, une interférence complète se produit, formant une tache sombre.

Au point O3 sur l’écran, la distance BO3 est plus long que AO3. Si la différence entre les deux distances, c’est-à-dire BO3 – AO3, est égal à un nombre pair de demi-longueurs d’onde, les deux rayons lumineux arrivant en O3 sera en phase, conduisant à la formation d’un point lumineux. Ce processus se répète de chaque côté de O1 sur l’écran, entraînant la formation de zones sombres et lumineuses alternées. Ce modèle de zones lumineuses et sombres alternées est populairement connu sous le nom de franges. Les zones sombres se produiront chaque fois que la différence de trajet de A et B équivaut à un nombre impair de demi-longueurs d’onde, et les zones claires se produiront lorsque la différence de trajet équivaut à un nombre pair de demi-longueurs d’onde.

Conclusion

Nous avons discuté de l’interférence optique avec un diagramme schématique. Veuillez nous faire part de votre opinion dans la session de commentaires ci-dessous.